41 research outputs found

    Editorial: Pharmacology of Plant Polyphenols in Human Health and Diseases

    Get PDF
    Polyphenols are one of the most abundant classes of secondary metabolites in plants and particularly relevant in leafy vegetables, fruits, berries, tea, and other beverages, with a wide range of health-promoting activities reported. They are also among the most widely studied natural products regarding their biosynthesis, chemical properties, and pharmacological activities. Different polyphenols such as anthocyanins, coumarins, carotenoids, flavonoids, and xanthones have been reported to be promising anti-inflammatory, anticancer, antidiabetic, antihyperlipidemic, antioxidant, and neuroprotective agents (Ganesan and Xu, 2017; Khan et al., 2019). In recent years, there is a growing number of papers that deal with the isolation, characterization, and bioactivity evaluation of polyphenols. However, many published results are mostly based on in vitro evidence. At the same time, there is less focus on the bioavailability, study of detailedmechanisms of action using animal models, and possible toxicities. There have also been concerns about the specificity of the compounds’ effects and the dose levels needed to achieve such outcomes. Althoughmany polyphenols show potent bioactivity during testing with in vitro evaluation systems, there are various challenges at an in vivo level. The in vitro results often cannot be translated to similar effects in animal models and clinical studies (Hu, 2007).https://www.frontiersin.org/journals/pharmacologyam2023Plant Production and Soil Scienc

    Stinging Nettle (Urtica dioica L.): Nutritional Composition, Bioactive Compounds, and Food Functional Properties

    Full text link
    Stinging nettle (Urtica dioica L., Urticaceae) is commonly found in Asia, Africa, and Europe and has a long history of being used as food and traditional medicine. Recently, this plant is gaining attention as a highly nutritious food, where fresh leaves are dried and used as powder or in other forms. Leaves are rich in many bioactive compounds. This review aims to cover the traditional uses in food and medicine, as well as its nutritional composition, including its bioactive chemical constituents and reported food functional activities. Various bioactive chemical constituents have been isolated from stinging nettle to date, such as flavonoids, phenolic acids, amino acid, carotenoids, and fatty acids. Stinging nettle extracts and its compounds, such as rutin, kaempferol, and vitamin A, are also used for their nutritional properties and as anti-inflammatory and antioxidant agents. Future studies should focus on the proper formulation and stability testing of the functional foods containing stinging nettle and their detailed activities in clinical studies.</jats:p

    Anti-Influenza Virus Potential of Probiotic Strain Lactoplantibacillus plantarum YML015 Isolated from Korean Fermented Vegetable

    Full text link
    Lactic acid bacteria are one of the potential natural remedies used worldwide, commonly known as probiotics. Here, the aim of this research investigation was to isolate a probiotic Lactobacilli strain, YLM015, from the popular Korean fermented vegetable “Kimchi” and to evaluate its anti-viral potential against influenza virus A (IFVA) H1N1 using the MDCK cell line in vitro, and in embryonated eggs in ovo. The YML015 strain was selected from among the 1200 Lactobacilli isolates for further studies based on its potent anti-viral efficacy. YML015 was identified and characterized as Lactoplantibacillus plantarum YML015 based on the 16S rRNA gene sequencing and biochemically with an API 50 CHL Kit. In ovo assay experienced with embryonated eggs and the hemagglutination inhibition method, as well as cytopathogenic reduction assay, was performed individually to observe anti-influenza viral activity of YML015 against influenza virus A H1N1. Additionally, YML015 was classified for its non-resistance nature as safe for humans and animals as confirmed by the antibiotic susceptibility (MIC) test, cell viability, and hemolysis assay. The heat stability test was also experienced by using different heat-treated cell-free supernatant (CFS) samples of YML015. As a result, YML015 showed highly potent anti-viral activity against influenza virus A H1N1 in vitro in the MDCK cell line. Overall findings suggest that anti-influenza viral activity of L. plantarum YML015 makes it a potential candidate of choice for use as an influential probiotic in pharmacological preparations to protect humans and animals from flu and viral infection.</jats:p

    Anacardium plants: Chemical,nutritional composition and biotechnological applications

    Get PDF
    Anacardium plants are native to the American tropical regions, and Anacardium occidentale L. (cashew tree) is the most recognized species of the genus. These species contain rich secondary metabolites in their leaf and shoot powder, fruits and other parts that have shown diverse applications. This review describes the habitat and cultivation of Anacardium species, phytochemical and nutritional composition, and their industrial food applications. Besides, we also discuss the secondary metabolites present in Anacardium plants which display great antioxidant and antimicrobial effects. These make the use of Anacardium species in the food industry an interesting approach to the development of green foods.AK. Jugran acknowledges the partial funding from Uttarakhand council for Biotechnology, Pantnagar, Uttarakhand, India (File No. UCB/R&D Project/2018-311) for this work. M. Martorell would like to thank the support offered by CONICYT PIA/APOYO CCTE AFB170007. N. Martins would like to thank the Portuguese Foundation for Science and Technology (FCT-Portugal) for the Strategic project ref. UID/BIM/04293/2013 and ?NORTE2020 - Northern Regional Operational Program? (NORTE-01-0145-FEDER- 000012)

    Chemical Composition, Biological Activity, and Health-Promoting Effects of Withania somnifera for Pharma-Food Industry Applications

    Get PDF
    The Withania genus comes from the Solanaceae family and includes around 23 species, spread over some areas of the Mediterranean, Asia, and East Africa. Widely used in traditional medicine for thousands of years, these plants are rich in secondary metabolites, with special emphasis on steroidal lactones, named withanolides which are used as ingredients in numerous formulations for a plethora of diseases, such as asthma, diabetes, arthritis, impotence, amnesia, hypertension, anxiety, stress, cancer, neurodegenerative, and cardiovascular diseases, and many others. Among them, Withania somnifera (L.) Dunal is the most widely addressed species from a pharmacological and agroindustrial point of view. In this sense, this review provides an overview of the folk uses, phytochemical composition, and biological activity, such as antioxidant, antimicrobial, anti-inflammatory, and cytotoxic activity of W. somnifera, although more recently other species have also been increasingly investigated. In addition, their health-promoting effects, i.e., antistress, anxiolytic, adaptogenic, antirheumatoid arthritis, chemoprotective, and cardiorespiratory-enhancing abilities, along with safety and adverse effects are also discussed.N. C. -M. acknowledges the Portuguese Foundation for Science and Technology under the Horizon 2020 Program (PTDC/PSI-GER/28076/2017)

    Overcoming Multidrug Resistance of Antibiotics via Nanodelivery Systems

    Full text link
    Antibiotic resistance has become a threat to microbial therapies nowadays. The conventional approaches possess several limitations to combat microbial infections. Therefore, to overcome such complications, novel drug delivery systems have gained pharmaceutical scientists’ interest. Significant findings have validated the effectiveness of novel drug delivery systems such as polymeric nanoparticles, liposomes, metallic nanoparticles, dendrimers, and lipid-based nanoparticles against severe microbial infections and combating antimicrobial resistance. This review article comprises the specific mechanism of antibiotic resistance development in bacteria. In addition, the manuscript incorporated the advanced nanotechnological approaches with their mechanisms, including interaction with the bacterial cell wall, inhibition of biofilm formations, activation of innate and adaptive host immune response, generation of reactive oxygen species, and induction of intracellular effect to fight against antibiotic resistance. A section of this article demonstrated the findings related to the development of delivery systems. Lastly, the role of microfluidics in fighting antimicrobial resistance has been discussed. Overall, this review article is an amalgamation of various strategies to study the role of novel approaches and their mechanism to fight against the resistance developed to the antimicrobial therapies.</jats:p

    Unravelling the Therapeutic Potential of Nano-Delivered Functional Foods in Chronic Respiratory Diseases

    Full text link
    Chronic inflammation of the respiratory tract is one of the most concerning public health issues, as it can lead to chronic respiratory diseases (CRDs), some of which are more detrimental than others. Chronic respiratory diseases include chronic obstructive pulmonary disease (COPD), asthma, lung cancer, and pulmonary fibrosis. The conventional drug therapies for the management and treatment of CRDs only address the symptoms and fail to reverse or recover the chronic-inflammation-mediated structural and functional damage of the respiratory tract. In addition, the low efficacy and adverse effects of these drugs have directed the attention of researchers towards nutraceuticals in search of potential treatment strategies that can not only ameliorate CRD symptoms but also can repair and reverse inflammatory damage. Hence, there is a growing interest toward investigating the medicinal benefits of nutraceuticals, such as rutin, curcumin, zerumbone, and others. Nutraceuticals carry many nutritional and therapeutic properties, including anti-inflammatory, antioxidant, anticancer, antidiabetic, and anti-obesity properties, and usually do not have as many adverse effects, as they are naturally sourced. Recently, the use of nanoparticles has also been increasingly studied for the nano drug delivery of these nutraceuticals. The discrete size of nanoparticles holds great potential for the level of permeability that can be achieved when transporting these nutraceutical compounds. This review is aimed to provide an understanding of the use of nutraceuticals in combination with nanoparticles against CRDs and their mechanisms involved in slowing down or reversing the progression of CRDs by inhibiting pro-inflammatory signaling pathways.</jats:p

    Indigenous use and bio-efficacy of medicinal plants in the Rasuwa District, Central Nepal

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>By revealing historical and present plant use, ethnobotany contributes to drug discovery and socioeconomic development. Nepal is a natural storehouse of medicinal plants. Although several ethnobotanical studies were conducted in the country, many areas remain unexplored. Furthermore, few studies have compared indigenous plant use with reported phytochemical and pharmacological properties.</p> <p>Methods</p> <p>Ethnopharmacological data was collected in the Rasuwa district of Central Nepal by conducting interviews and focus group discussions with local people. The informant consensus factor (F<sub>IC</sub>) was calculated in order to estimate use variability of medicinal plants. Bio-efficacy was assessed by comparing indigenous plant use with phytochemical and pharmacological properties determined from a review of the available literature. Criteria were used to identify high priority medicinal plant species.</p> <p>Results</p> <p>A total of 60 medicinal formulations from 56 plant species were documented. Medicinal plants were used to treat various diseases and disorders, with the highest number of species being used for gastro-intestinal problems, followed by fever and headache. Herbs were the primary source of medicinal plants (57% of the species), followed by trees (23%). The average F<sub>IC</sub> value for all ailment categories was 0.82, indicating a high level of informant agreement compared to similar studies conducted elsewhere. High F<sub>IC </sub>values were obtained for ophthalmological problems, tooth ache, kidney problems, and menstrual disorders, indicating that the species traditionally used to treat these ailments are worth searching for bioactive compounds: <it>Astilbe rivularis</it>, <it>Berberis asiatica</it>, <it>Hippophae salicifolia, Juniperus recurva</it>, and <it>Swertia multicaulis</it>. A 90% correspondence was found between local plant use and reported plant chemical composition and pharmacological properties for the 30 species for which information was available. Sixteen medicinal plants were ranked as priority species, 13 of which having also been prioritized in a country-wide governmental classification.</p> <p>Conclusions</p> <p>The <it>Tamang </it>people possess rich ethnopharmacological knowledge. This study allowed to identify many high value and high priority medicinal plant species, indicating high potential for economic development through sustainable collection and trade.</p

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency–Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research
    corecore